Structure Reports

Online
ISSN 1600-5368
D. Gayathri, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\mathrm{a} *}$ K. Ravikumar, ${ }^{\text {b }}$ E. Poonguzhali ${ }^{\text {c }}$ and H. Surya Prakash Rao ${ }^{\text {c }}$
${ }^{\text {a Department of Crystallography and Biophysics, }}$ University of Madras, Guindy Campus, Chennai 600025 , India, ${ }^{\text {b }}$ Laboratory of X-ray
Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Chemistry, Pondicherry University, Pondicherry 605 014, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.173$
Data-to-parameter ratio $=19.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(2,6-Diphenylpiperidin-1-yl)ethanol

The title compound, $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}$, crystallizes with two molecules in the asymmetric unit. The piperidine ring adopts a chair conformation in both molecules. Intramolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are observed in only one molecule in the asymmetric unit. The crystal packing is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions, generating $R_{4}^{4}(8)$ rings.

Comment

The strong base, piperidine, is widely used as a building-block molecule in several industries. It is used as an intermediate in agrochemicals, pharmaceuticals and rubber vulcanization accelerators. Several 2,6-substituted piperidine derivatives possess fungicidal, herbicidal and bactericidal properties (Mobio et al., 1989). In view of the above importance, the X-ray crystal structure determination of the title compound, (I), has been undertaken.

(I)

Compound (I) crystallizes in the triclinic system with two molecules, A and B, in the asymmetric unit. The bond lengths and angles are comparable with the corresponding values in a related structure which we published recently (Gayathri et al., 2006). The sums of the bond angles around atom N1 [335.9 and 332.1° for molecules A and B] indicate $s p^{3}$ hybridization. The C1-N1-C6-C7, C5-N1-C6-C7 and N1-C6-C7O1 torsion angles are $58.5(2),-68.1(2)$ and $174.1(1)^{\circ}$, respectively, in molecule A, and -139.7 (1), 95.9 (2) and $50.7(2)^{\circ}$, respectively, in molecule B.

The piperidine ring adopts a chair conformation in both molecules. The puckering parameters (Cremer \& Pople, 1975) are $q_{2}=0.009(2) \AA, q_{3}=0.571(2) \AA, Q_{\mathrm{T}}=0.571(2) \AA$ and φ $=2.1(2)^{\circ}$, respectively, for molecule A, and $q_{2}=0.024(2) \AA$, $q_{3}=0.565(2) \AA, Q_{\mathrm{T}}=0.566(2) \AA$ and $\varphi=2.4(2)^{\circ}$, respectively, for molecule B.

Figure 1
The asymmetric unit of (I), showing 30% probability displacement ellipsoids.

Figure 2
The crystal packing of (I), viewed down the a axis. H atoms which are not involved in hydrogen bonding have been omitted for clarity.

Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are observed only in molecule B and not in molecule A, because of the difference in the torsion angles $\mathrm{N} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{O} 1 A$ [174.1 (1) ${ }^{\circ}$] and $\mathrm{N} 1 B-\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{O} 1 B\left[50.7(2)^{\circ}\right]$ in molecules A and B, respectively. In the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ interaction, atom $\mathrm{O} 1 B$ acts as donor to $\mathrm{N} 1 B$, generating an $S(5)$ ring motif. In the $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, atom $\mathrm{C} 7 B$ acts as a donor to the centroid, $C g$, of the $\mathrm{C} 14 B-\mathrm{C} 19 B$ ring, with an $\mathrm{H} 7 B 2 \cdots C g$ separation of $2.659 \AA$.

The crystal packing of (I) is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions (Table 2), generating $R_{4}^{4}(8)$ rings.

Experimental

To a homogenous solution of 1,3-diphenylpropane (0.992 mmol , $250 \mathrm{mg}, 1$ equivalent), ethanolamine ($9.92 \mathrm{mmol}, 605 \mathrm{mg}, 10$ equivalents) and polyethyleneglycol-200 (10 ml) in a 25 ml Erlenmeyer flask, 85% formic acid ($9.92 \mathrm{mmol}, 465 \mathrm{mg}, 1 \mathrm{ml}, 10$ equivalents) was added at 273-278 K. The reaction mixture was then irradiated in a domestic microwave oven for 3 min at 370 W , after which time no 1,3diphenylpropane was detected by thin-layer chromatography. After completion of the reaction, the reaction mixture was added to icecold water $(25 \mathrm{ml})$ and the pH of the aqueous solution was adjusted to 11 with 1 N NaOH . The organic compounds were extracted with dichloromethane ($\mathrm{DCM} ; 3 \times 15 \mathrm{ml}$). The DCM solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude product was subjected to column chromatography on basic alumina by eluting with increasing amounts of ethyl acetate in hexanes ($2-10 \%$). After purification, compound (I) was obtained as a white crystalline solid (yield $76 \%, 212 \mathrm{mg}$). Single crystals were obtained by recrystallization from about 5% DCM in hexanes (b.p. 333-353 K).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}$
$M_{r}=281.38$
Triclinic, $P \overline{1}$
$a=11.7863$ (9) \AA
$b=12.2482$ (9) \AA
$c=12.8201$ (10) \AA
$\alpha=95.077$ (1) ${ }^{\circ}$
$\beta=107.637(1)^{\circ}$
$\gamma=109.768(1)^{\circ}$

$$
\begin{aligned}
& V=1621.7(2) \AA^{3} \\
& Z=4 \\
& D_{x}=1.152 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{2} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.26 \times 0.24 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: none
18837 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.173$
$S=1.03$
7414 reflections
381 parameters
H -atom parameters constrained

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C1 $A-\mathrm{N} 1 A$	$1.472(2)$	$\mathrm{C} 1 B-\mathrm{N} 1 B$	$1.487(2)$
$\mathrm{C} 5 A-\mathrm{N} 1 A$	$1.480(2)$	$\mathrm{C} 5 B-\mathrm{N} 1 B$	$1.482(2)$
$\mathrm{C} 6 A-\mathrm{N} 1 A$	$1.471(2)$	$\mathrm{C} 6 B-\mathrm{N} 1 B$	$1.476(2)$
$\mathrm{C} 7 A-\mathrm{O} 1 A$	$1.390(2)$	$\mathrm{C} 7 B-\mathrm{O} 1 B$	$1.395(2)$
$\mathrm{C} 6 A-\mathrm{N} 1 A-\mathrm{C} 1 A$	$111.9(1)$	$\mathrm{C} 6 B-\mathrm{N} 1 B-\mathrm{C} 5 B$	$110.8(1)$
$\mathrm{C} 6 A-\mathrm{N} 1 A-\mathrm{C} 5 A$	$112.0(1)$	$\mathrm{C} 6 B-\mathrm{N} 1 B-\mathrm{C} 1 B$	$110.5(1)$
$\mathrm{C} 1 A-\mathrm{N} 1 A-\mathrm{C} 5 A$	$112.0(1)$	$\mathrm{C} 5 B-\mathrm{N} 1 B-\mathrm{C} 1 B$	$111.8(1)$
$\mathrm{N} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{O} 1 A$	$174.1(1)$	$\mathrm{N} 1 B-\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{O} 1 B$	$50.7(2)$
$\mathrm{C} 7 A-\mathrm{C} 6 A-\mathrm{N} 1 A-\mathrm{C} 1 A$	$58.5(2)$	$\mathrm{C} 7 B-\mathrm{C} 6 B-\mathrm{N} 1 B-\mathrm{C} 1 B$	$-139.7(1)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).
$C g$ is the centroid of the $\mathrm{C} 14 B-\mathrm{C} 19 B$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1B-H1B1 $\cdots \mathrm{N} 1 B$	0.82	2.54	$2.884(2)$	107
C7B-H7B2 $\cdots g$	0.97	2.66	$3.528(2)$	149
O1 $A-\mathrm{H} 1 A 1 \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.82	1.93	$2.744(2)$	170
O1B-H1B1 $\cdots \mathrm{O} 1 A^{\text {ii }}$	0.82	2.09	$2.816(2)$	148

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x, y-1, z$.

All H atoms were positioned geometrically and allowed to ride on their parent C and O atoms, with the $\mathrm{O}-\mathrm{H}$ distance fixed at $0.82 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$, and with $\mathrm{C}-\mathrm{H}$ distances fixed in the range $0.93-0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent C).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the University Grants Commission (UGC-SAP) and the Department of Science and Technology (DST-FIST), Government of India, is acknowledged by DG and DV for providing facilities to the department. DV thanks CSIR, India, for a Major Research Project.

References

Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Gayathri, D., Velmurugan, D., Ravikumar, K., Poonguzhali, E. \& Rao, H. S. P. (2006). Acta Cryst. E62, o4169-o4171.

Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. \& Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427. (In Russian).
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

